BEST PRACTICES IN SUGAR TECHNOLOGIES AND ETHANOL PRODUCTION

Presented at

9th CII Green Sugar Summit 2024

Speaker: Anurag Goyal Marketing & Technical Head – Sugar Plants & Distilleries, Isgec Heavy Engineering Ltd. Council Member – STAI Counsellor from India - ISSCT

ISGEC HEAVY ENGINEERING LTD.

PREAMBLE

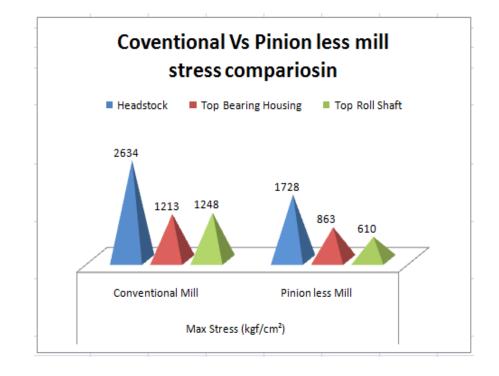
- 25 years ago when margins were good and sugar business was profitable so other revenue streams of by products were neglected.
- Sugarcane is a political crop rising it's prices by every crushing season which reversed the profit scenario of sugar business.
- Profits can only gained and sustained by in-house savings and diversification of sugar business.
- Savings triggered the thoughts for various efficiencies e.g. RME, PI, RBHR, energy saving ,reducing waste, and utilizing resources effectively to maximize yield and profitability
- Sugarcane has been projected as the crop for the future contributing to the production of not only sugar but also as a renewable source of green energy in the form of bio-fuels, bio-electricity and many bio-based products.
- A sustainable modern sugar complex integrates innovative technologies and practices to optimize energy consumption while expanding the product portfolio.
- Isgec is continuously dedicated to develop new Innovative & advance technologies to make sugar industry sustainable.

PROCESS AND TECHNOLOGICAL IMPROVEMENT TILL NOW.

- From non gravity plants to gravity plant
- From steam engines to steam turbine to DC motors to AC motors,
- From open to closed gear boxes, hydraulic drives to dyno drive, and finally settled down to AC variable frequency drives (VFD) with planetary gear box.
- From conventional tail bar coupling to Rope coupling
- From Manually operated to automated machinery
- From double carbonation to double sulphitation to sulphur-free sugar /refined sugar to liquid sugar/pharmaceutical sugar
- From open batch pan boiling to horizontal continuous vacuum pan boiling to vertical continuous pan boiling
- From huge ground water consumption to zero ground water consumption.

SUGAR PLANT

PINIONLESS MILLS - ADVANTAGES

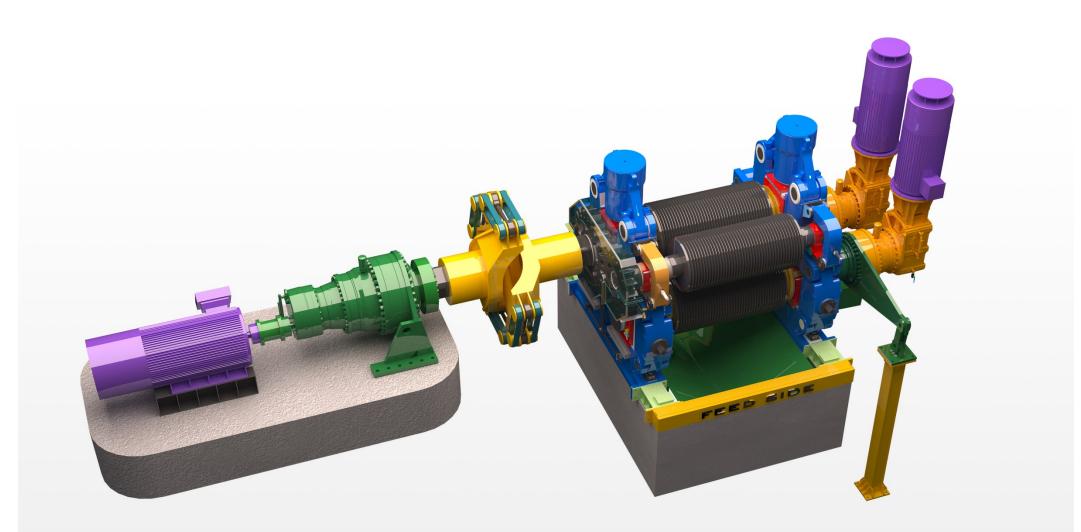

• Elimination of tail bar/rope coupling & crown pinions from a system results in reduced the wear & tear, reduced power consumption up to 15%.

•The tandem with lesser wear tear consumes lesser lubricants & ensures higher service life of equipments.

Pinion free mill top roller floats easily and reduces mill choking, also it facilitates running of top & bottom rollers at a different speed, a feature which increases mill extraction efficiency.

•Reduced stress level in the mill headstock increases the mill reliability even at high crushing rate.

 Pinion less mill saves 50 % of the foot space, this reduces huge civil cost & misalignment between drive & mill.



S. No.	Particulars	Conventional Mills	Pinion Less Mills
1.	Power Consumption	1.7 – 1.8 kW/TCH	1.3 – 1.4 kW/TCH
2.	Wear & Tear	Higher	Lower than conventional mills
3.	Footsteps	Higher space required	Approx. 30 % Lesser space required than conventional mills
4.	Civil Cost	Higher	Lower
5.	Overall Drive Efficiency	76 %	88 %

PINIONLESS MILLS WITH ASSIST DRIVES

3d Model of Typical pinion less Mill with assist drive

PINIONLESS MILLS WITH ASSIST DRIVES

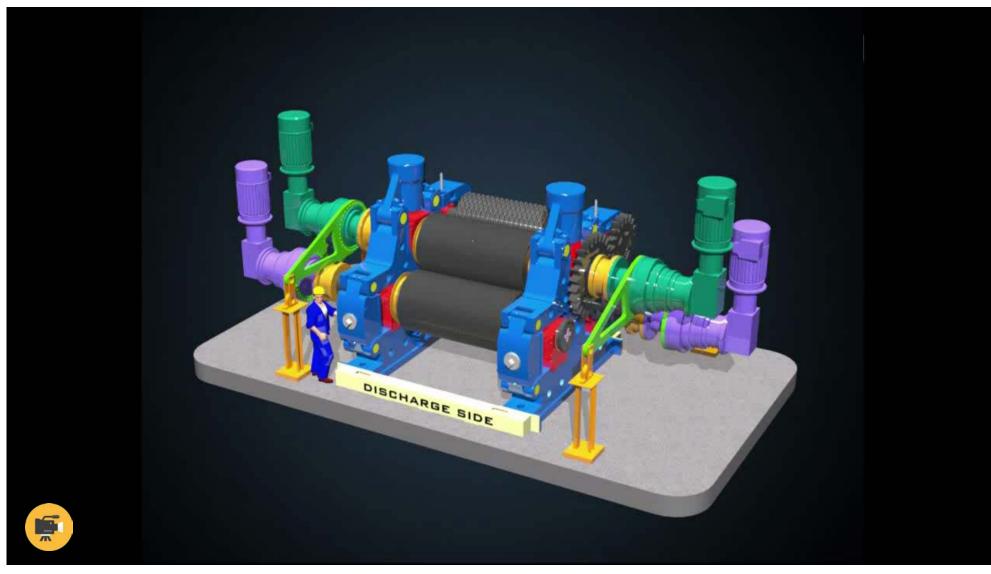


Fig: Actual installation at San Diego, Gautemala Site having Top Roller with Foot mounted drive and Bottom Rollers with Shaft mounted drive

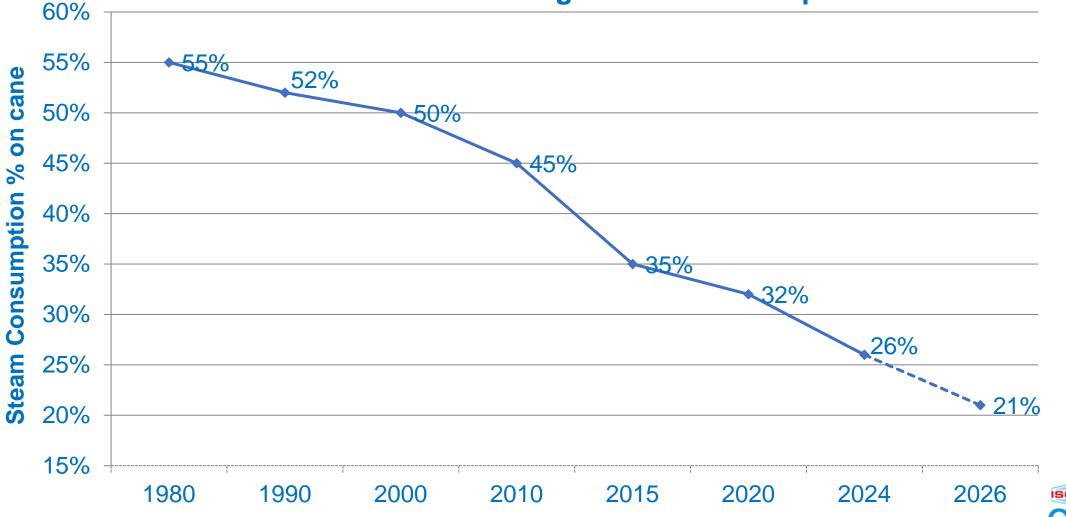
PINIONLESS MILLS WITH SHAFT MOUNTED DRIVES

PINIONLESS MILLS WITH SHAFT MOUNTED DRIVES

Fig: Actual installation at Jay Mahesh Site, India

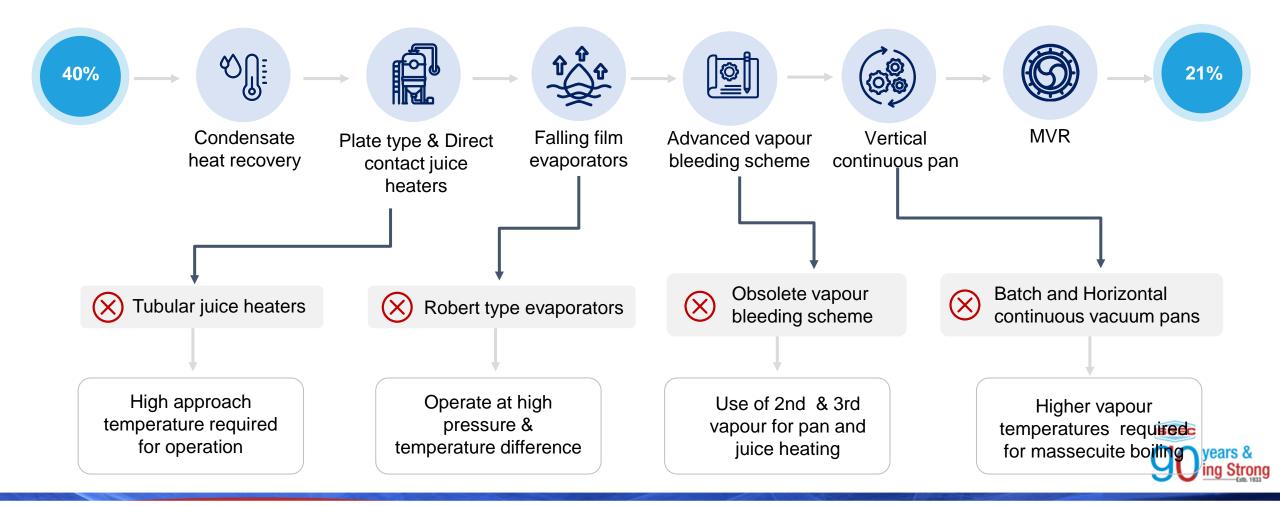
PINIONLESS MILLS WITH SHAFT MOUNTED DRIVES




Fig : In Line Shaft mounted drive on Top, feed & discharge roller – ISL, Mukerian, Punjab

STEAM CONSUMPTION-GRAPH PLANTATION WHITE SUGAR PLANT

Average Steam consumption % on cane



STRATEGIES THAT MADE POSSIBLE.... TO REDUCE STEAM CONSUMPTION

Stepping towards better steam economy

years & ina Stronc

- Bindal Paper Mills Limited has a diversified Business Portfolio in paper industry. Their vision is to save ecosystem and conserving trees for future generation by adopting latest technologies.
- To fulfil the demand of fibre to their paper plants, company has awarded ISGEC to setup a modern new sugar &
 Ethanol plant having minimum steam consumption to save maximum bagasse for their paper plants by adopting the following steam saving practices and technologies

Crushing capacity	7,500 t cane/day expandable to 10,000 t cane/day				
Sugar production	Double sulphitation white sugar				
Process highlights for steam saving up to 26% on cane	Septuple-effect evaporator (all falling film evaporators) set with condensate flash recovery system Three & Half massecuite boiling: complete C heavy diversion to distillery, vertical continuous pan for B & C massecuite				
Steam generation plant	100 t/h at 68 ata, 485±5°C, travelling grate boiler				
Boiler fuel	 100% bagasse 40% bagasse + 60% bagasse pith (weight basis) 30% rice husk +70% bagasse pith (weight basis) 25% woodchips+75% bagasse pith (weight basis) 				
Power plant	15 MW captive Power Plant with Backpressure turbine				
Distillery capacity	120,000 L/day ethanol on Syrup & B heavy feedstock, 85KLPD on C heavy				
Incineration for vinasse	25 t/h , 45 ata vinasse fired incineration boiler with 2.5 MW power generation				

KEY HIGHLIGHTS OF PROCESS PLANT FOR STEAM SAVING IS GEC HEAVY

- Seven Effect Evaporator Configuration with all Falling Film Evaporator
- Extensive vapor bleeding scheme
- All Batch Pans with Mechanical Circulators design on 5th Vapor
- Vertical Continuous Pan for B massecuite boiling design on 6th Vapor
 Vertical Continuous Pan for C massecuite boiling design on 5th Vapor
- LT-HT condensate use for juice heating

5

6

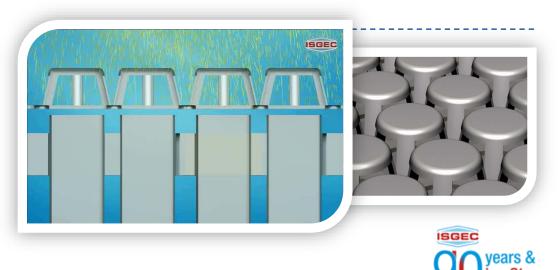
- Use of DCH for juice heating and molasses conditioning
- Condensate flash recovery vessel
- Vapor line juice heater in VCP vapor line

PLANT OVER VIEW

GLIMPSE OF BINDAL SUGAR PLANT

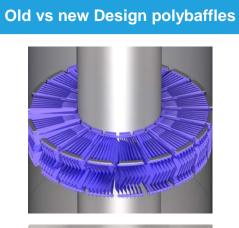
FEATURES OF ISGEC FFE

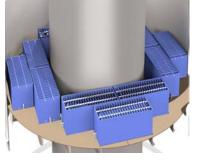
Inbuilt 5-stage cascade type, Maintenance friendly juice distributor that forms a uniform shower of juice across the entire cross section.

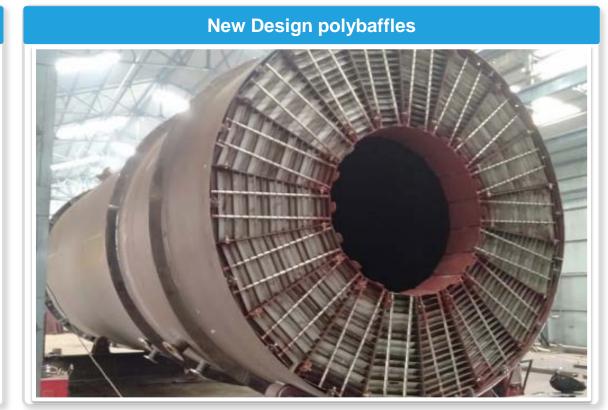

Segmented tray plate with individual tripod umbrellas located over each tube. These prevent short circuiting and also ensure equal and uniform wetting of each and every tube.

Height between distributor & top tube sheet is 1.8 m above to facilitate easy access for cleaning and maintenance during season (No need to open cover in season). Tripod system for 100 % wetting of tubes.

Juice distribution in FFE






ISGEC DESIGN MODERN POLY BAFFLE ENTRAINMENT SEPARATOR FOR STRAIGHT DESIGN FFE

Isgec has made improvements & developed straight design FFE body so that poly baffle area can be high and entrainment chances can be negligible.

Design of Poly Baffle is registered by Indian Patent Office Government of India

ADVANTAGES OF ISGEC VERTICAL CONTINUOUS PAN

Excellent crystal quality in terms of **C.V.** (28%) and **Color** due to better crystal growth and reduction in final molasses purity.

Good centrifuging ability of VCP product.

Reduced vapor requirement – 28-30 % on massecuite.

Flexibility in operation.

No manpower required, complete automation.

No need of Separate grain pan.

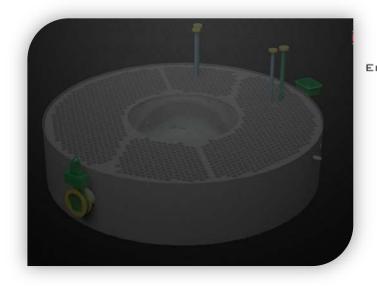
DESIGN FEATURES OF i-VCP

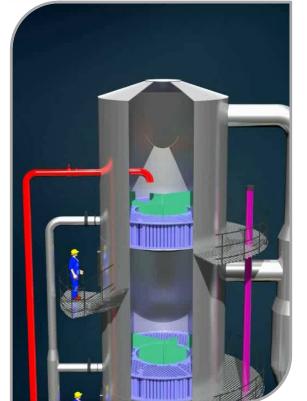
Partitioned module

The top two modules for B and C have two and three partitions; respectively, whereas for A and refined massecuite there is no partitioned module.

Partition of calandria restricts installation of mechanical circulator like un-partitioned module.

The reason of partition is:

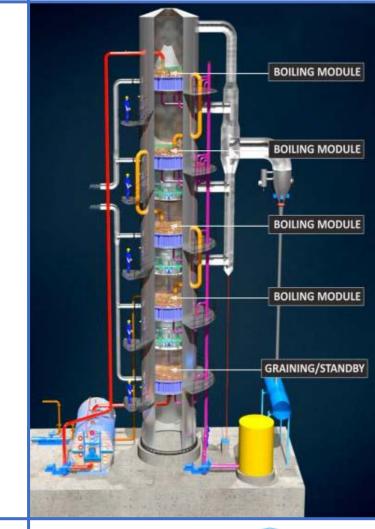



To provide partial plug flow to massecuite to avoid any dead zone formation

21

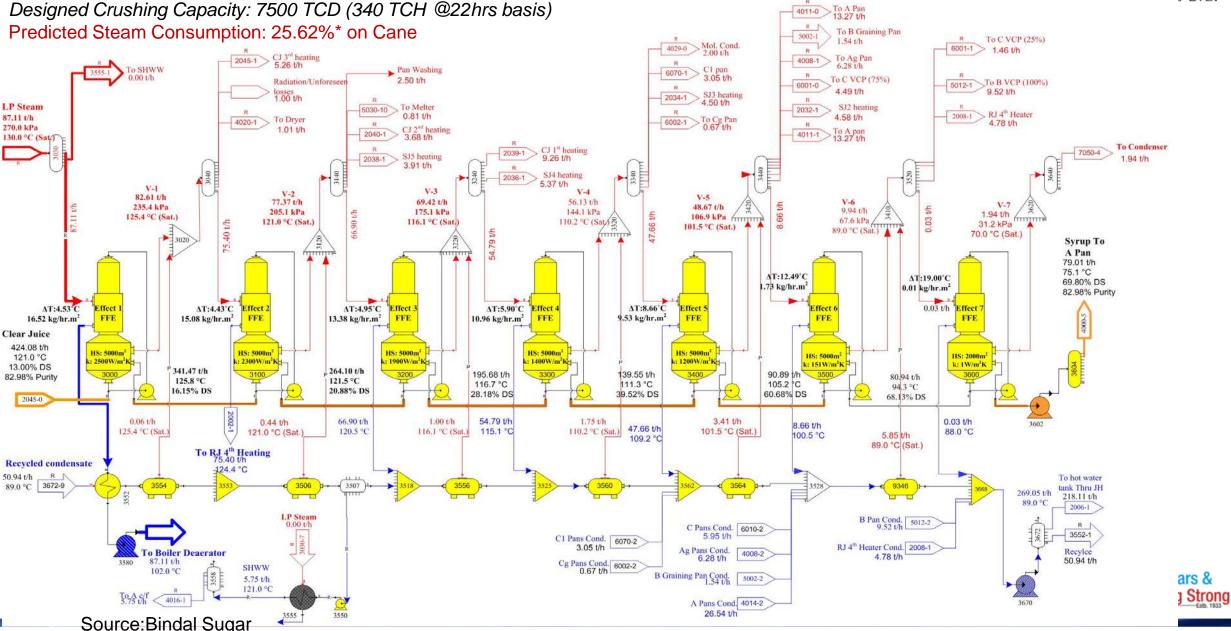
To avoid short circuiting of massecuite so that exhaustion through initial boiling can be improved

DESIGN FEATURES OF i-VCP


INBUILT GRAINING/STANDBY module: i-VCP is designed with bottom most module for graining and standby.

Benefits of this additional module is:

- One complete batch type pan for grain preparation is removed.
- Structure requirement of graining pan, grain storage vessel is removed.
- Whenever any of the upper modules are being cleaned, the pan maintains 100% capacity utilization.


Vapor utilization:

- Since all module calandria are not interconnected so different type vapors can be used individually.
- So low pressure vapors can be used for boiling and higher pressure vapors for tightening module.
- Due to this flexibility of vapor utilization, overall steam consumption is reduced.

EVAPORATION HMBD WITH 26% STEAM CONSUMPTION

EXTENSIVE VAPOR BLEEDING SCHEME

1st effect	2nd effect	3rd effect	4th effect	5th effect	6th effect	7th effect
CJ3 heating (DCH)	SJ5 heating (DCH)	SJ4 heating (DCH)	SJ3 heating (DCH)	SJ2 heating (DCH)	B massecuite boiling (VCP)	Condenser
Sugar dryer air heater	CJ2 heating (DCH)	CJ1 heating (DCH)	C1 massecuite boiling (VCP)	B graining (Batch)	C massecuite boiling (VCP)	
	B sugar Melting		Cg graining	A massecuite boiling (Batch)	RJ 4th heating (Tub)	
	Pan washing		Molasses conditioning (DCH)	C massecuite boiling (VCP)		

Heating	Vapour used	Type of heat exchanger	
Raw juice 1 st heating	Excess condensate	Liquid to liquid plate type heater	
Raw juice 2 nd heating	VCP vapours (waste vapours)	Vapour line type vertical tubular heater	
Raw juice 3 rd heating	Low temp condensate (waste heat)	Liquid to liquid plate type heater	
SJ 1 st heating	High temp condensate (waste heat)	Liquid to liquid tubular type heater	ve:
ource:Bindal Sugar			ing

BAGASSE SAVING

SI. No.	Date	Cane crushed (in QtIs)	Sugar recovery* (%)	Steam consumption (% cane)	Bagasse saving % on cane	Profit from bagasse saving @ 3000 INR/T (in Lakhs per day)
1	6.12.2023	71000	9.15	26.58	13.15	28.0
2	7.12.2023	62000	9.20	30.13	12.21	22.7
3	8.12.2023	42000	9.24	25.67	13.23	16.7
4	9.12.2023	75000	9.28	25.60	13.6	30.6
5	10.12.2023	76100	9.31	26.9	13.7	31.3
6	11.12.2023	67700	9.35	27.50	13.34	27.1
7	12.12.2023	66600	9.46	26.21	13.18	26.3
8	13.12.2023	74300	9.56	25.39	13.72	30.6
9	14.12.2023	67000	9.67	27.14	13.84	27.8

Courtesy : Bindal paper

We reached from 8-10% to 13-14% bagasse saving by achieving 26% steam consumption.

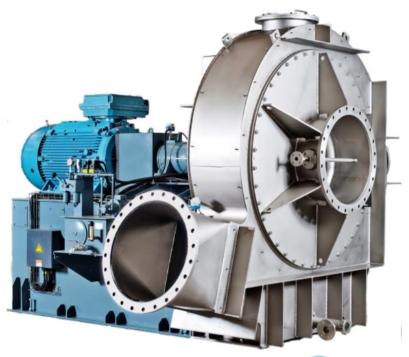
EMERGING TECHNOLOGY - MECHANICAL VAPOR RECOMPRESSION (MVR)

- In MVR, the electrical energy used in compression is converted into increased enthalpy of vapors.
- This vapors can be re-used in heating/boiling in spite of going as waste steam in condensers.
- Small quantity of make-up is also used along with to maintain desired temperature and to compensate condensation loss if any.
- Since this compression is done by a mechanical compressor, the process is called Mechanical Vapor Re-Compression

17

- Principle :To use a compressor machine to compress secondary steam (evaporated vapor), to improve it's enthalpy.
- Based on Boyle's law for an ideal gas i.e.
- **PV/T = K** (Pressure x Volume / Temperature) = Constant
- This shows that during compression as the volume of gas decreases, the pressure and temperature increases resulting increased enthalpy.

MVR USE AT SUGAR PLANT



To increase the temperature of evaporator' later effect vapors, So that low pressure vapors can be used for pan boiling and high temp. juice heating.

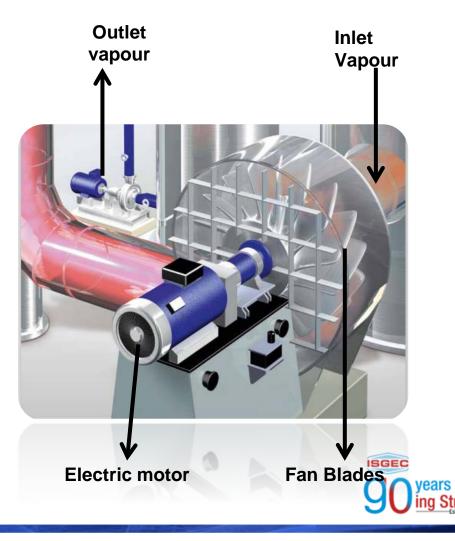
Applicable only :

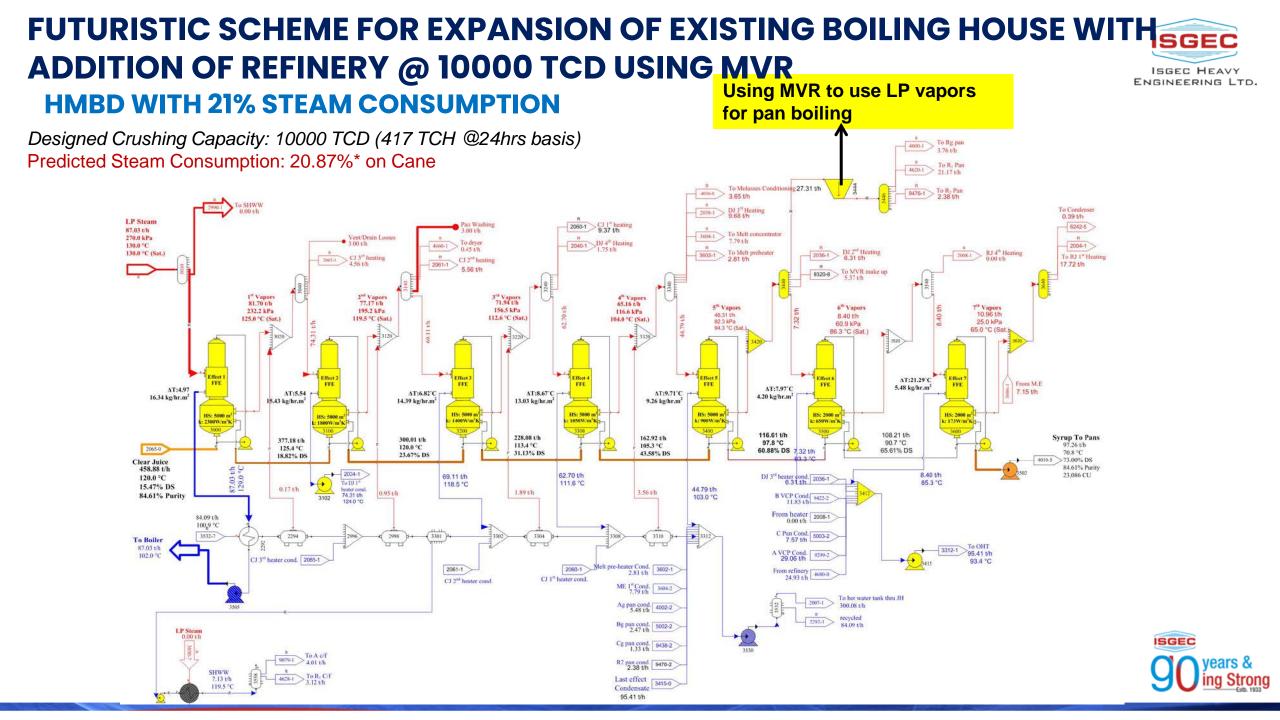
- If vapors are in adequate amount at later effect to utilize
- Heating surface area at bleeding stage should be sufficient
- Single stage MVR is sufficient to raise the temperature

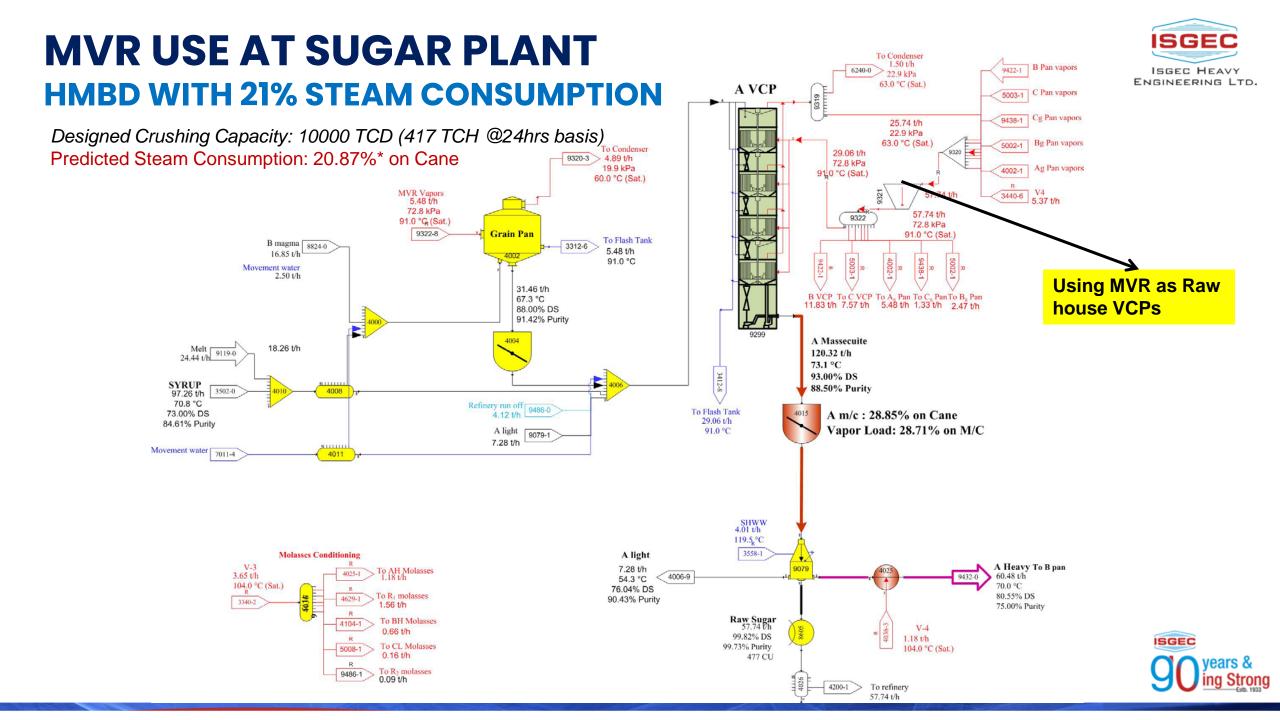
MVR USE AT SUGAR PLANT

To reuse/recycle the outlet vapor of pan, melt concentrator, syrup concentrator in its' own calandria as heating media.

- Recycling needs minor makeup steam
- 3-4 stage MVR required for pan boiling (Depending upon the designed temperature in calandria)
- Multiple batch pans and horizontal continuous pan can be connected to single MVR system through a common header
- Saving on heating surface area of evaporator bodies
- For pre-vacuum, small condenser required.
- Vapor control to condenser, for vacuum is required.
- Very useful during plant expansion, No need to add boiler for increased vapor demand.
- Most suitable for standalone refineries where fuel and water is costly, power is subsidized.


MVR USE AT SUGAR PLANT




Water Saving

 Use of MVR also reduces load on condenser which ultimately reduces load on injection water cooling system and therefore reduces evaporation losses, blowdown losses & drift losses, saves power.

 Since vapor is being recycled so pure condensate obtained which can be utilized for distillery and other utilities.

EVAPORTOR VAPOR BLEEDING SCHEME WITH MVR

1st effect	2nd effect	3rd effect	4th effect	5th effect	6th effect	7th effect
CJ3 heating (DCH)	CJ2 heating (DCH) Pan washing	DJ4 heating (DCH)	DJ3 heating (DCH)	DJ2 heating (DCH)	RJ 4th heating (Tub)	Condenser RJ heating
	Sugar dryer air heater	CJ1 heating (DCH)	Melt evaporator & preheating	MVR makeup		i to nouting
		B sugar Melting	Molasses conditioning (DCH)	Refinery pan boiling (through booster MVR)		

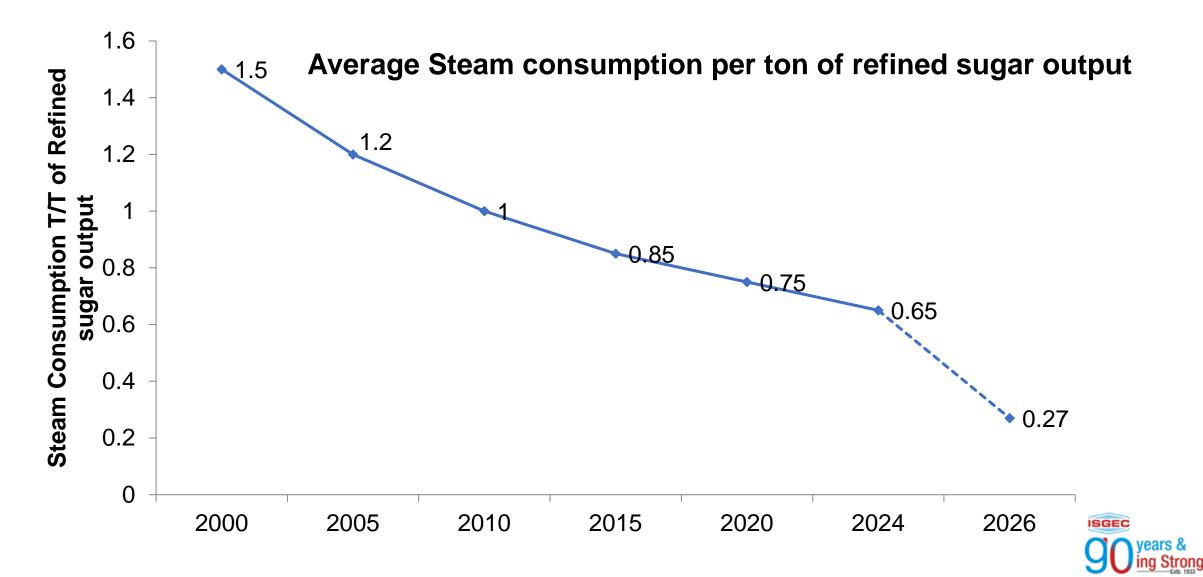
*Note: No Vapor is used for Raw house m/c boiling i.e. Raw m/c, B m/c & C m/c boiling. These boiling takes place through MVR vapors

Vapour used	Type of heat exchanger	
Excess condensate	Liquid to liquid plate type heater	
waste vapours	Vapour line type vertical tubular heater	
Low temp condensate (waste heat)	Liquid to liquid plate type heater	
High temp condensate (waste heat)	Liquid to liquid tubular type heater	
	Excess condensate waste vapours Low temp condensate (waste heat)	

Source:Bindal Sugar

MVR USE AT SUGAR PLANT: SAVINGS

			LTD.
DESCRIPTION	VALU	JEUNIT	LTD.
Plant capacity	10000	TCD	
Evaporator configuration	7 effect		
Season days	150		
Plant Type	Backend Refinery		
Steam consumption without MVR (4% increase due to addition of refinery)	30.0%	On cane	
Steam consumption with MVR	21.0%	On cane	
Steam saving	9.0%	On cane	
Bagasse saving @ 2.4 steam fuel ratio	3.75%	% on cane	
Bagasse saving in season	56,250	Tons	
Profit from bagasse @ 3000Rs./T rate	16.875	Crore	
Power consumption of plant @ 30kW/T of cane	12.5	MWh	
MVR Power consumption	4.6	mWh	
Total Power consumption	17.1	MWh	
Sugar Plant Steam consumption with MVR	88	TPH	
Steam to HP heater & deaerator	11	TPH	
Total steam generation from boiler	98	TPH	
Power generation	17.8	mwh	
Deficit power	0.7	mwh	
Cost of power @ 3.5Rs./Unit	0.93	Crore	
Net profit	15.95	Crore	
Capex of MVR	24	Crore	irs &
Pay back period	1.5	year	Strong



STANDALONE REFINERY

STEAM CONSUMPTION-GRAPH STANDALONE REFINERY

Features of ISGEC installed 2500TPD standalone refinery

Port based Standalone Sugar Refinery.

Colour reduction : > 55% in Carbonatation & > 75% in IER

Online Sugar crystal colour & moisture monitoring

<65% RSO steam consumption

Refined Sugar output: 2500 TPD of EEC2 grade sugar (<45 IU)

Brine recovery : >98 % through NF, RO & Electro Dialysis

Yield : > 97.5 % from VHP grade Raw Sugar.

Automated vacuum pan boiling with pan microscope.

Clarification Process Adopted : Carbonatation + IER + BRS.

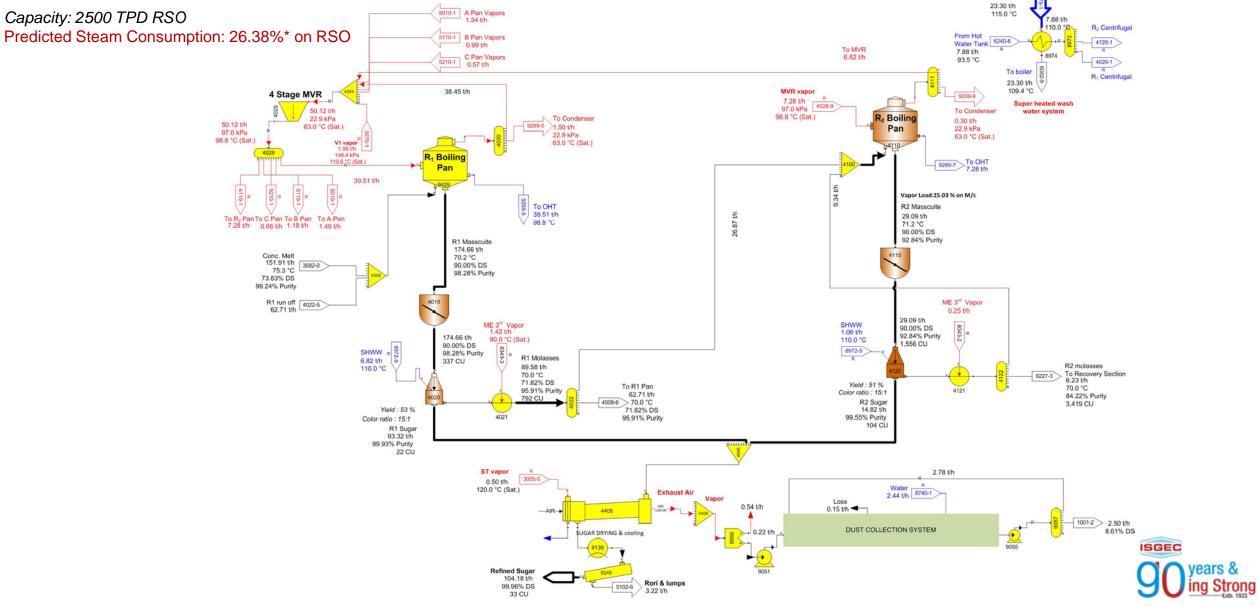
STATE OF ART ATTRIBUTES OF PLANT

VAPOUR BLEEDING SCHEME

Vapor	Pressure in Kpa/Temp. in °C	Vapor
ST vapor	219.9 kPa 123.2 oC	 RO recovered water heater Sweet water heater R1, R2, R3 & C pans Melt evaporator-FFE SHWW heater Dryer air heater Melt preheater-2 Pan washing
V1	161.2 kPa 113.5 <i>°</i> C	B Pan Retentate evaporators Melt Pre heater-1
V2	114.5 kPa 103.4 ⁰C	A Pan Screened Raw melt heater Before and After Carbonated melt heaters IER Pre heater
٧3	70.2 kPa 90.0 ⁰C	 IER water heater Process water heater Fine liquor heater (FFE) Raw Liquor heater A melt recirculation heater R1,R2,R3, A and B molasses conditioners Melting water heater

s & trono

STEAM AND POWER CONSUMPTION DURING OPERATION

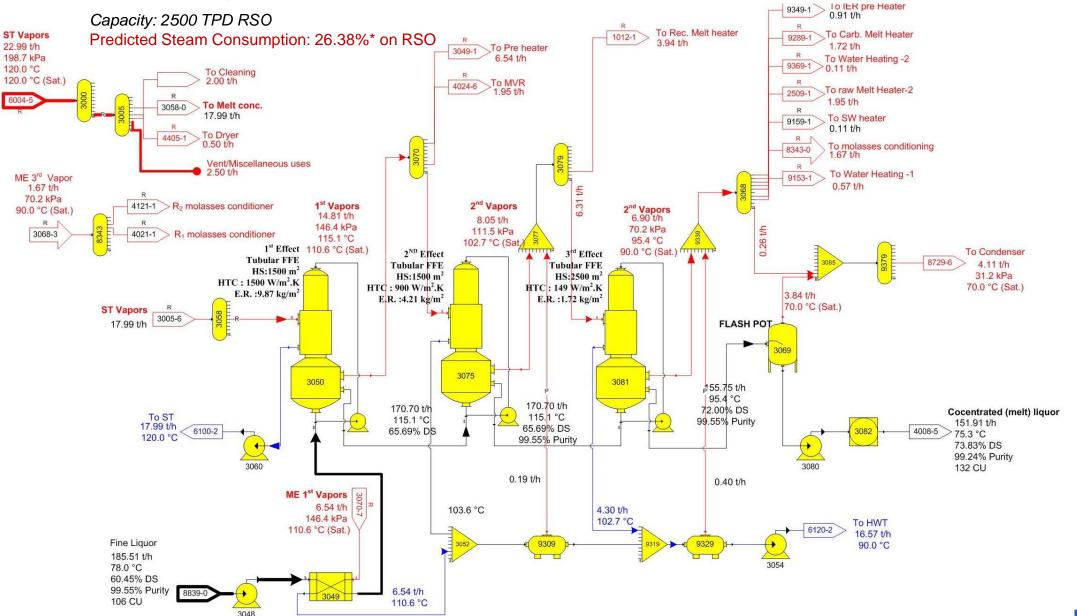

Date	Raw sugar t/d	Refined sugar t/d	Steam t/d	Power kW/t RSO	Steam kg/kg RSO
01-11-2021	2478	2357	1551	68	0.658
02-11-2021	2232	2186	1576	73	0.721
03-11-2021	2616	2514	1595	68	0.634
04-11-2021	2361	2293	1435	73	0.626
05-11-2021	2408	2372	1471	67	0.620
06-11-2021	2681	2626	1567	68	0.597
07-11-2021	2480	2298	1515	73	0.659
08-11-2021	2326	2193	1504	74	0.686
09-11-2021	2161	2419	1490	67	0.616
10-11-2021	2299	2189	1576	73	0.720
Average	2404	2345	1528	70	0.654

FUTURISTIC APPROACH OF MVR APPLICATION IN STANDALONE REFINERY

Exhaust Cond.

HMBD WITH 27% STEAM CONSUMPTION

FUTURISTIC APPROACH OF MVR APPLICATION IN STANDALONE REFINERY



ISGEC

years &

ing Strong

HMBD WITH 27% STEAM CONSUMPTION

VAPOUR BLEEDING SCHEME WITH MVR ON PANS

Vapor	Pressure in Kpa/Temp. in °C	Vapor
ST vapor	198.7 kPa 120 ºC	 Melt evaporator-FFE Dryer air heater Pan washing
V1	146 kPa 110.6 ⁰C	MVR makeup Melt Pre heater-1
V2	111.5 kPa 102.7 ⁰C	Recirculation melt heater
٧3	70.2 kPa 90.0 ℃	 IER pre heater Carbonated lqiuor heater Process water heater Sweet water heater Raw Liquor heater R1,R2,R3, A and B molasses conditioners Melting water heater

STANDALONE REFINERY WITH MVR ON PANS: SAVINGS

• In standalone refineries where fuel is costly, power is subsidized ; MVR is a good option to adopt to bring down steam consumption from 0.65 to 0.27 Tons per ton of RSO.

Savings with MVR in standalone Refinery			
Particulars	Unit	MVR on Refinery and recovery batch pans	No MVR
Total Plant Capacity	TPD	2500	2500
Total Plant Capacity	TPH	104.17	104.17
Steam Consumption (on boiler generation)	% on RSO	27	65
Steam Consumption	TPH	28.13	67.71
Power generation	MWH	5.11	12.31
Boiler Power consumption	Mwh	0.7	1.1
New refinery Process house consumption@40kW/T of RSO	MWH	4.2	4.2
MVR consumption	MWH	4.5	0
Total consumption	MWH	9.4	5.3
Coal consumption@4.5 S/F ratio	TPH	6.3	15.0
Coal cost per year @ 7000Rs./ton of coal	Lakhs	3465	8341.7
Power generation	MWH	5.1	5.3
Deficit power to be purchased	MWH	4.3	-
Power rate	INR/unit	3.0	-
Power cost per hour	Lakhs	0.1	-
Per year Power cost	Lakhs	1010.5	-
Tetal cost (Bower (Cool)			0211 7 5

Difference/Saving	on	3866	
	Lakhs/Seas		
1Total cost (Power +Coal)	Lakhs	4475.5	8341
Per year Power cost	Lakhs	1010.5	
Power cost per hour	Lakhs	0.1	
Power rate	INR/unit	3.0	

ETHANOL PLANT

STEAM SAVING IN DISTILLERY OPERATION

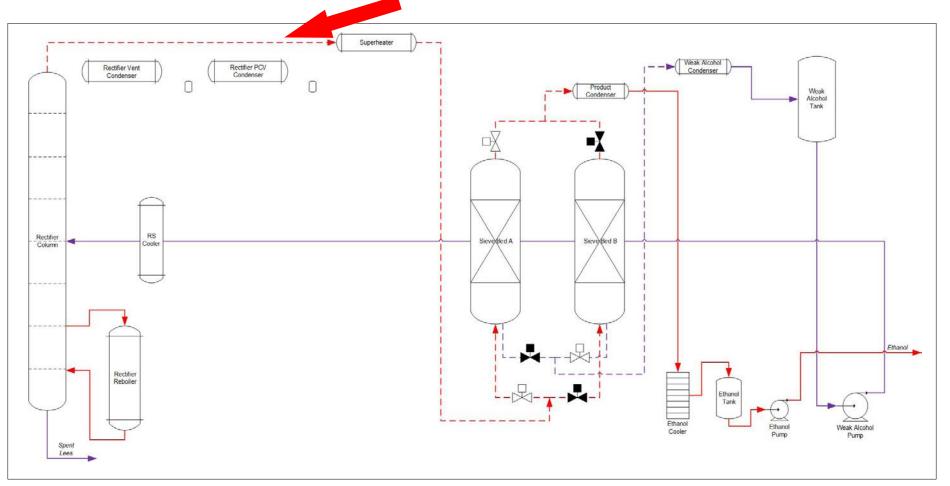
RECTIFIER VAPOUR BASED DEHYDRATION

- The total steam consumption for wash to ethanol is 2.25 kg/lit of alcohol for Syrup as feedstock.
- With Integration of various vapors it can be reduced to 1.75 kg/lit of alcohol with following integrations:

Through vapour integration from various source available in the Distillery process plant by doing MSDH section vapour utilizing in the Analyser column re boiler.
 Rectifier column in liquid phase & fed to recovery column for vaporisation & alcohol vapours further superheated in Super Heater before feeding to Molecular sieve beds.

Advantages:

- In this system Recovery Column & Recovery Column Reboiler is not required.
- Rectified spirit can be also drawn from Rectifier Column as per requirement.
- Lower CAPEX No recovery column & its reboiler accessories
- 35 40% reduction in steam consumption of dehydration system (around 0.25 kg/L)
- Rectified spirit can be drawn as a product as and when desired
- Flexibility of standalone operation of dehydration system using rectifier column

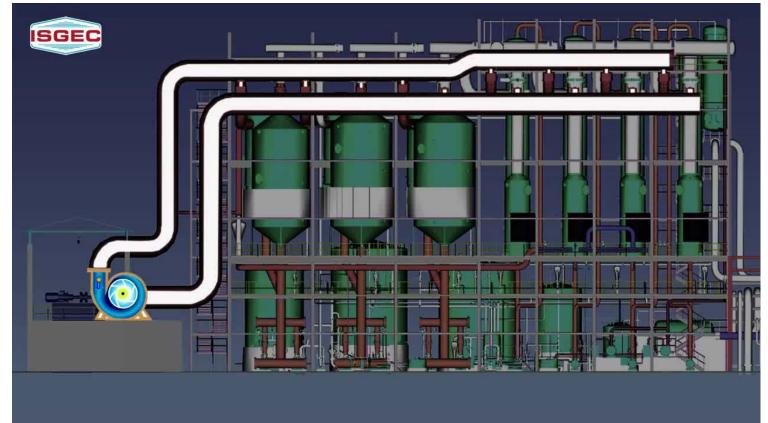


STEAM SAVING IN DISTILLERY OPERATION

RECTIFIER VAPOUR BASED DEHYDRATION

Rectifier column vapour feeding directly to Super heater

STEAM SAVING IN DISTILLERY OPERATION


RECTIFIER VAPOUR BASED DEHYDRATION

Particulars	Conventional Process	With integration	Unit
Plant Capacity	300	300	KLPD
Steam consumption	2.25	1.75	Kg/lit of alcohol
	28.125	21.875	ТРН
Saving in steam consumption		6.25	ТРН
		150	TPD
Steam Fuel Ratio	2.2	2.2	
Bagasse Saving		68	TPD
5 5		20400	T/Season (@300 days)
Revenue from bagasse saving @ 3000 / - per ton of bagasse		612	Lakhs

MVR USE AT DISTILLERY AT SPENTWASH EVAPORATOR

- ISGEC HEAVY ENGINEERING LTD.
- All evaporators will get steam from a common header, delivers generated vapor to another common header which is connected to MVR suction and after compression, increased enthalpy vapor will be given to feed steam header.
- It also requires make-up steam equivalent to 5-6% of total evaporation, to maintain the desired temperature and also to compensate condensation loss, if any.
- Reduces steam & water consumption therefore reducing boiler and cooling tower capacity

MVR USE AT DISTILLERY AT SPENTWASH EVAPORATOR

MVR Installation at Swaraj Agro

MVR USE AT DISTILLERY: SAVINGS AT SYRUP BASED DISTILLERY PLANT

S. No	Description	UOM	Value
1	Plant capacity - Distillery	KLPD	300
2	Steam consumption for conventional evaporator process @ 1.10 kg/lit in case of syrup	TPH	13.75
3	Steam consumption with MVR (Only for make up)	TPH	2.0
4	Net Steam saving (S.No:2 – 3)	TPH	11.75
5	Net Steam saving per day	TPD	282
8	Net bagasse saving	TPD	128
9	Extra revenue generation @ 3000 / - per ton of bagasse @ 300 days (Season)	Lakhs	1152
10	Increasing power (1000 kW) consumption for MVR @ 3.50 / - per kW @ 300 days (Season)	Lakhs	(-) 252
11	Overall saving	Lakhs	900
12	Cost of MVR	Lakhs	700
13	Return of investment	Year	< 1.0

MVR USE AT DISTILLERY: SAVINGS AT GRAIN BASED DISTILLERY

S. No	Description	UOM	Value
1	Plant capacity - Distillery	KLPD	300
2	Steam consumption for conventional Grain based Distillery Plant @ 3.75 kg/lit in case of Maize	TPH	46.785
3	Steam consumption for MVR Grain based Distillery Plant @ 2.90 kg/lit in case of Maize	TPH	36.250
4	Net Steam saving (S.No:2 – 3)	TPH	10.535
5	Net Steam saving per day	TPD	253
8	Net bagasse saving	TPD	115
9	Extra revenue generation @ 3000 / - per ton of bagasse @ 300 days (Season)	Lakhs	1035
10	Increasing power (1800 kW) consumption for MVR @ 3.50 / - per kW @ 300 days (Season)	Lakhs	(-) 453
11	Overall saving	Lakhs	582
12	Cost of MVR	Lakhs	700
13	Return of investment	Year	< 1.2

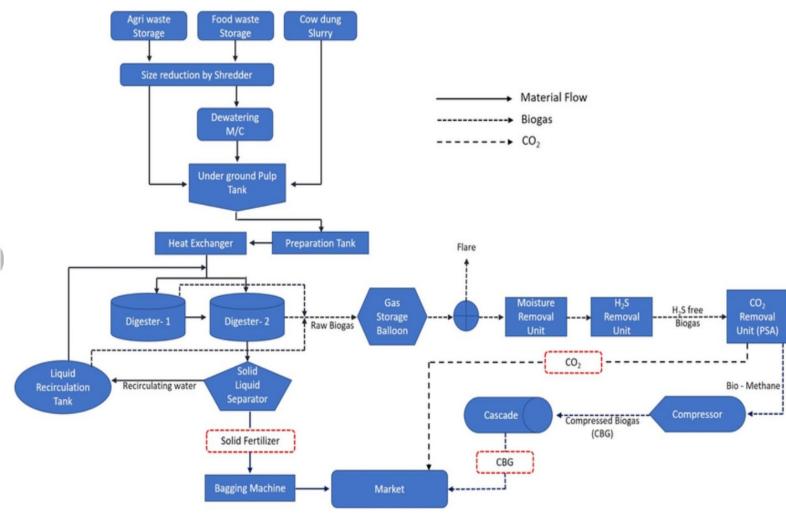
MVR USE AT DISTILLERY – GRAIN AS FEED STOCK AT vapour integrated in Distillation Section and Evaporation using multistage MVR

Particulars	Conventional Process	With integration / With MVR	Unit
Plant Capacity	300	300	KLPD
Steam consumption	3.75	2.90	Kg/lit of alcohol
•	46.785	36.250	ТРН
Saving in steam consumption		10.535	ТРН
		253	TPD
Steam Fuel Ratio	2.2	2.2	
Bagasse Saving		115	TPD
5 5		34500	T/Season (@300 days)
Revenue from bagasse saving @ 3000 / - per ton of bagasse		1035	Lakhs

STEAM SAVING IN DISTILLERY OPERATION STEAM CONSUMPTION OF MODERN PLANT

PARAMETER	FEEDSTOCK	CONVNETIONAL PLANT VALUE(IN KG/LITRE OF ALCOHOL)	MODERN PLANT VALUE(IN KG/LITRE OF ALCOHOL)	MODERN PLANT WITH SYRUP PLANT VAPOUR INTERGRATION AND MVR
	Final Molasses	5.0 - 5.20	3.7	2.1
Total Steam consumption (RS Distillation + Dehydration + Spent wash evaporation up to	B-heavy Molasses (10 – 20 % spent wash recycle)	4.30 - 4.50	2.8	1.1
60% w/w)	Cane Syrup (60°Bx) (30% - 50 %spent wash recycle)	4.0	2.3	1.0
Total steam consumption in Grain based Distillery plant (RS Liquefaction + Distillation + Dehydration + DDGS Dryer and Evaporator up to 30 – 35 % w/w)	Grain (Maize)	5.0 - 6.0	3.75	2.9

BIOGAS


Biogas is a mixture of methane, CO_2 and small quantities of other gases produced by anaerobic digestion of organic matter in an oxygen-free environment. The precise composition of biogas depends on the type of feedstock and the production pathway

Composition	Biogas	Bio-CNG/CBG
Methane	55-65%	>90%
Carbon Dioxide	30-40%	<4%
Hydrogen Sulfide	0.1-4%	<16 ppm
Nitrogen	3%	<0.5%
Oxygen	0.1-2%	<0.5%
Moisture	1-2%	0%
Calorific Value	19.5 MJ/kg	47-52 MJ/kg

Fuel	Equivalent quantity to 1 m3 of biogas
Kerosene	0.62 lit.
Firewood	3.50 kg
Cattle dung cake	12.3 kg
Charcoal	1.46 kg
Furnace oil	0.40 lit.
Electricity	1.25 kW
LPG	0.43 kg
Diesel	0.52 lit.
Coal	1.6 kg

BIOGAS

Process flow diagram of compress biogas (CBG) plant

Main Technologies

Bio-digesters: These are airtight systems (e.g. containers or tanks) in which organic material, diluted in water, is broken down by naturally occurring micro-organisms. Contaminants and moisture are usually removed prior to use of the biogas.

Landfill gas recovery systems: The decomposition of municipal solid waste (MSW) under anaerobic conditions at landfill sites produces biogas. This can be captured using pipes and extraction wells along with compressors to induce flow to a central collection point.

Wastewater treatment plants: These plants can be equipped to recover organic matter, solids, and nutrients such as nitrogen and phosphorus from sewage sludge. With further treatment, the sewage sludge can be used as an input to produce biogas in an anaerobic digester.

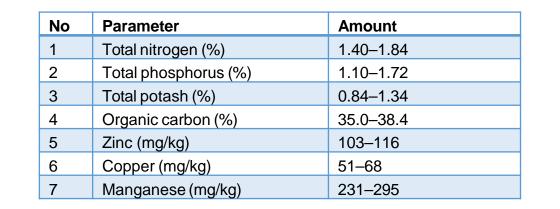
Key Market Drivers

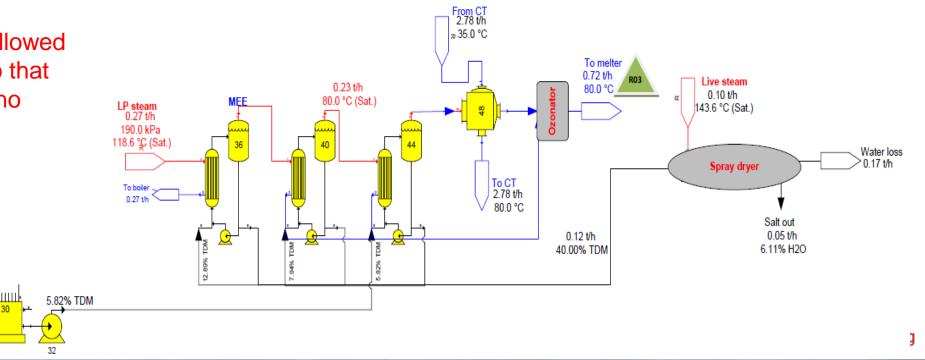
- Production of "Syngas / Bio-CNG (CBG)" for Oil Marketing Companies (OMC)
- Market Price: Rs 71.60/kg, with a subsidy of Rs 4Cr per 4,800 kg of CBG per day generated from 12,000 m3 of biogas / day.
- By-product: Organic Manure Solid & Liquid, Briquettes
- Government is providing Central financial assistance.

BIOGAS:BYPRODUCTS

SOLID EFFLUENT

Digestate is a nutrient-rich substance ,used as a fertilizer which improves the soil fertility, soil structure and yields of crops.

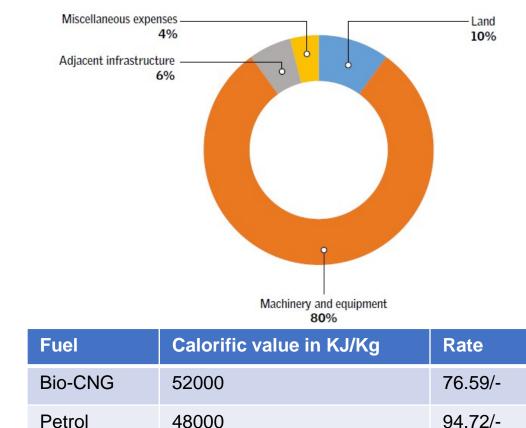

LIQUID EFFLUENT TREATMENT


Retentate

MEE feed Tank

0.83 t/h

Multiple effect evaporator followed by agitated thin film dryer so that problem of liquid effluent is no more point of concern



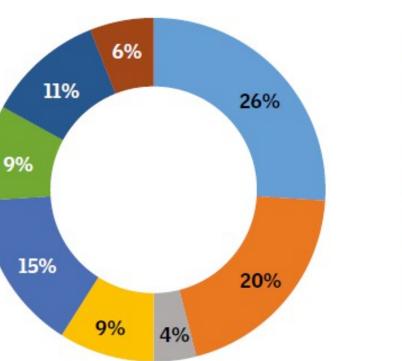
87.62/-

57.7/-

As on dated 25.7.2024 in Delhi

44000

49789


Diesel

LPG

BIOGAS PLANT SETUP

CAPEX

SGEC ISGEC HEAVY ENGINEERING LTD.

OPEX

SUGAR PLANT POTENTIAL

Description	Value	Unit
Cane crushed (2023-24)	3129.8	Lakh T
Filter cake production	3.5	% on cane
	109.5	Lakh T
100T press mud produces	3.25	T CBG
	2806.6	m3 CBG
Sugar plant potential to generate biogas	30,74,34,424	m3 biogas
1 m3 CBG	1.08	litre of petrol
So saving on petrol	332	Mn litres
So saving on crude oil	704	Mn litre crude oil

BIOGAS

- Isgec has signed a technical partnership with GPS renewables to provide end to end solution for CBG plants on EPC basis
- Feedstocks

Press Mud Cake Distillery Spent wash Biomass like cane trash Napier Grass

- GPS renewables has vast technical expertise in CBG vertical with 6 executed projects and around 15 projects under execution
- ✤ India has huge potential in CBG with almost 535 sugar plants.
- There are many GOI initiatives like Sustainable Alternative Towards Affordable Transportation (SATAT) Scheme, MNRE: Waste to Energy Scheme, GOBAR (Galvanizing Organic Bio-Agro Resources) DHAN Scheme, Agro Infrastructure Fund (AIF), State Specific Incentives, Carbon Credits, Corporate Social Responsibility (CSR) Funds, Priority Sector Lending

Indone SSO (Organic MSW) based OBC Project	Mechys Pratisch	EverEnsito Resource Management Pvt. Ltd.	Organic Monicipal Golic Waste	500 TPD	15.3
Barabania Bio-CNG Project	Utter Pradosh	Relience Industries Ltd.	Paddy Straw – Pross Mud Cake	Up to 300 TPD Pross Multi- Up to 100 TPD Pacity Straw	20
Panipa: PS CBG Project	Haryana	Reliance Industries .td.	Peddy Straw (PS)	HO IPD	15
Jbejar PS CBG Project	Heryane	Reliance Industries 11d	Peckty Sinew (PS)	150 TPD	20
Prayagnaj MSW PTU (Pretreatment Unit)	Uttar Predesh	Relience Industries Ltd.	Municipal Solid Wasto (MSW)	175 TPD	-
Vadodara MSW PTU (Preincatmont Unit)	Gujarat	Relance Industries _td.	Municipe Solid Waste (MSW)	100 PD	
Ehopal MSW CBG Project.	Machya Pradesh	EverEnviro Resource Management Pvt. Ltd.	Municipa Solid Wester (VSW)	400 TPD	14.6
Farshabed PS CBC Project	Haryana	Hisar Biogas Pvt. Ltd.	Paddy Straw	105 TPD	15
Jabalpur CBB Project	Machya Prodesh	Relience Industries Ltd.	Poddy Strow + Napler Grass	PB - 130 TPD NG - 199 TPD	22.6
Bilespor OBC Project	Chistingath	Reliance Industries Id	Patidy Shaw + Napier Grass	PS - 130 TPD NG - 130 TPD	22.5
Rapur CBG Project	Chhattisgarh	Reliance Industries _td.	Padity Straw - Nepier Crass	PS - 130 TPD NG - 130 TPD	22.5
Bhapel CBB Project	Machya Pradesh	Relience Industries Ltd.	Paddy Straw + Naplar Grass	PE - 130 TPD NG - 130 TPD	22.5
Jind CBG Project	Haryana	Reliance IndustriesId.	Paddy Straw + Napier Grass	P8 - 130 TPD NG - 130 TPD	22.5
Pirishit CBG Project	Uttar Pradosh	Reliance Industries Ltd.	Paddy Straw - Nepier Cress	PS - 130 TPD NG - 130 TPD	22.5
Peddepuram, Kakineda 1 CBG Preject	Anchra Fradesh	Reficice Industries Ltd.	Paddy Straw - Naplor Grass	P8 - 130 TPD MS - 130 TPD	22.6
Polekumu Village, Tallarevu, Kakinada 2 DBG Project	Andhra Pradesh	Reliance Industries Int	Patitly Straw + Napler Grass	PS - 130 TPD NG - 130 TPD	22.5
Reyebhupalapatham Village, Tallatevu. Kakinade 3 CBG Project	Andhra Fradosh	Reliance Industries Ltd.	Paddy Straw + Nepiar Crass	PS 130 TPD NG - 130 TPD	22.5
Or and all OBC Project	Uttar Prodesh	Relience Industries .td.	Paddy Strow + Naplor Grass	P8 - 130 TPD NG - 130 TPD	22.5
Hisar CBG Projec;	Haryana	Reliance Industries Int	Pathy Straw + Napler Grass	PS - 150 TPD NG - 130 TPD	22.5
Jhajjar Phase 2 Extension CBG Project	Rajasthan	Reliance Industries Ltd.	Mustard Trash + Cotton Stalk	MT - 120 TPD CS - 115 TPD	21
Heidergarh DBC Project	Uttar Predesh	Relience Industries .td.	Peddy Straw ~ Press Mud Cake	PS - 135 TPD PMC - 110 TPD	20

www.isgec.com

59

BIOGAS PLANT INSTALLED

Feedstock used:

- Press Mud Cake
- Paddy Straw
- Cane Trash
- ✓ Cow Dung

BIOGAS PLANT INSTALLED

20 TPD CBG plant in Indore, MP

Feedstock used: ✓ Municipal Waste

CONCLUSION

- Adoption of efficient and modern technologies helps to reduce cost of production, research & development is a continuous process so we should always be ready to think out of the box.
- Future is of green energy so it is time to take step towards utilization of renewable resources.
- Diversification towards the different products is very important to increase revenues.
- Decarbonization technology and applications are necessary for sustainability and growth of sugar industry.

THANK YOU FOR YOUR ATTENTION

